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Financial Setting

• Option priced on an asset St

• Dynamics of St unspecified, but suppose paths are
continuous, and we see prices of call options at all strikes
K and at maturity time T

• Assume for simplicity that all prices are discounted — this
won’t affect our main results

• Under risk-neutral measure, St should be a
(local-)martingale, and we can recover the law of ST at
time T from call prices C(K ).... Skorokhod Embedding
Problem... David’s talks...
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Variance Options
• We may typically suppose a model for (discounted) asset

prices of the form:

dSt

St
= σtdWt ,

where Wt a Brownian motion.
• the volatility, σt , is a locally bounded, progressively

measurable process
• Want to consider options on variance.
• For example, a variance swap pays:∫ T

0

(
σ2

t − σ̄2
)

dt

where σ̄ is the ‘strike’. Dupire (1993) and Neuberger
(1994) gave a simple replication strategy for such an
option. (More recently, Davis-Obłój-Ramal, 2013).
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Hedge of Variance Swap

• Dupire’s hedge: Itô implies

d (ln St ) = σt dWt −
1
2
σ2

t dt

• Hold portfolio short 2 contracts paying ln(ST ), long 2/St
units of asset

• At time T , portfolio will be worth (up to constant)
∫ T

0 σ2
t dt

• Note that the only modelling assumption here is that the
volatility process exists!

• Note also that 〈ln S〉T =
∫ T

0 σ2
t dt , where 〈·〉t is quadratic

variation.
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Variance Options
• A variance call is an option paying:

(〈ln S〉T − K )+

• More general options of the form: F (〈ln S〉T ).
• E.g.: volatility swap, payoff:√

〈ln S〉T − K .

• More generally, can consider payoffs dependent on
weighted realised variance:

RVλ
T =

∫ T

0
λ(St ) d 〈ln S〉t =

∫ T

0
λ(St )σ

2
t dt .

• E.g.: options on corridor variance or a gamma swap:∫ T

0
1{St∈[a,b]} d 〈ln S〉t ,

∫ T

0
St d 〈ln S〉t .
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Options on (weighted) realised variance

• Let λ(x) be a strictly positive, continuous function,
τt := RVλ

T =
∫ t

0 λ(Ss)σ2
s ds and At such that τAt = t .

• Then W̃t =
∫ At

0 σsλ(Ss)1/2 dWs is a BM w.r.t. F̃t = FAt , and
if we set X̃t = SAt , we have:

dX̃t = X̃tλ(X̃t )
−1/2 dW̃t .

• X̃t is now a diffusion on natural scale
• (X̃τT , τT ) = (ST ,RVλ

T )

• Knowledge of L(ST ) =⇒ L(X̃τT ).
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Variance Call

• This suggests finding lower/upper bound on price of
variance call (say) with given call prices is equivalent to:

minimise/maximise: E(τ − K )+ subject to: L(X̃τ ) = µ

where µ is a given law.
• Are there Skorokhod Embeddings which do this?
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Root’s Construction
• B ⊆ R× R+ a barrier if:

(x , t) ∈ B =⇒ (x , s) ∈ B

for all s ≥ t
• Given µ, and D = BC ,

exists stopping time

τD = inf{t ≥ 0 : (X̃t , t) 6∈ D}

which is an embedding.
• Minimises E(τ − K )+ over

all (UI) embeddings
• Root (1969)
• Rost (1976)

˜

t

• C. & Wang (2013)
• Oberhauser & dos

Reis (2013)
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Rost’s Construction
• B ⊆ R× R+ a reversed

barrier if:

(x , t) ∈ B =⇒ (x , s) ∈ B

for all s ≤ t
• Given µ, and D = BC ,

exists a stopping time

τD = inf{t ≥ 0 : (X̃t , t) 6∈ D}

which is an embedding.
• Minimises E(τ − K )+ over

all (UI) embeddings

˜

t

• Rost (1971)
• Chacon (1985)
• McConnell (1991)
• C. & Peskir (2012)
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Variance Call
• Finding bound on price of variance call with given call

prices is equivalent to:

min/maximise: E(τ − K )+ subject to: L(Xτ ) = µ

where µ is a given law.
• These are (essentially) the problems solved by Root’s and

Rost’s Barriers!
• Rost (1971) proved the existence of a filling scheme

stopping time for a general class of processes. Chacon
(1985) showed that the filling scheme was indeed a
reversed barrier under some assumptions on the process,
and proved optimality.

• The connection to Variance options has been observed by
a number of authors: Dupire (’05), Carr & Lee (’09),
Hobson (’09).
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Questions

Question
This known connection leads to two important questions:

1. How do we find the Root/Rost stopping times?
2. Is there a corresponding hedging strategy?

• Dupire gave a connected free boundary problem for Root
• In C. & Wang, gave a variational characterisation of Root’s

barrier & construction of optimal strategy; Oberhauser &
dos Reis gave characterisation as viscosity solution. Key
step in construction for Root: classical results on existence
of solution.
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Rost’s Solution: Class of possible processes

Suppose
dX̃t = X̃tλ(X̃t )

−1/2 dW̃t ,

where λ is in the set D ⊆ C(I;R) such that
• λ(x) is strictly positive,

• X̃ is a regular diffusion on I,
• with transition density p(t , x , y) with respect to Lebesgue
• such that, for any x0 ∈ I, c > 0, open set A containing x0

and ε > 0, there exists δ > 0 such that

| (p(t , x , x0)− p(s, x , x0)) x2
0λ(x0)−1| < ε

whenever |s − t | < δ and either x0 6∈ A or t > c.
(Chacon’s Equicontinuity condition)
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Rost’s Solution

Theorem (Rost & Chacon)
Suppose µ and ν are probability measures on I with ν ≤cx µ,
and λ ∈ D with X̃0 ∼ ν:

1. if µ and ν have no mass in common, then there exists a
reversed barrier D such that X̃τD ∼ µ;

2. if µ and ν have mass in common, then (on a possibly
enlarged probability space) there exists a random variable
S ∈ {0,∞}, and reversed barrier D, such that X̃τD∧S ∼ µ.

Moreover, in both cases, the resulting embedding maximises
EF (σ) over all stopping times σ with X̃σ ∼ µ and
Eσ = EτD ∧ S <∞, for any convex function F on [0,∞).

See also Beiglböck & Huesmann (2013) for a promising
alternative approach to existence!
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Characterising the Barrier
Suppose I = (0,∞), λ ∈ C1(I) ∩ D and, |λ(x)−1| and
|λ′(x)λ(x)−2x | are bounded on (0,∞).

Theorem
Suppose D is Rost’s reversed barrier. Then
u(x , t) = Uµ(x) + Eν

∣∣∣x − X̃t∧τD∧S

∣∣∣ is the unique bounded
viscosity solution to:

∂u
∂t

(x , t) =

(
σ(x)2

2
∂2u
∂x2 (x , t)

)
+

u(0, x) = Uµ(x)− Uν(x).

Moreover, given a solution u, a reversed barrier D which solves
the SEP can be recovered by D = {(x , t) : u(x , t) > u(0, t)}.

See also Oberhauser & dos Reis (2013).
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Computing the Barrier
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• Optimal stopping interpretation:
u(x , t) = supτ≤t Ex

[
Uµ(X̃τ )− Uν(X̃τ )

]
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Optimality of Rost’s Barrier

Chacon’s Result
Given a function F which is convex, increasing, Rost’s
(reversed) barrier solves:

maximise EF (X̃τ )

subject to: X̃τ ∼ µ
τ a stopping time

Want:
• A simple proof of this. . .
• . . . that identifies a ‘financially meaningful’ hedging strategy.

For simplicity, consider the case where S0 is non-random.
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Optimality
Write f (t) = F ′(t), define

M(x , t) = E(x ,t)f (τD),

and fix T > 0. Write σ(x) = xλ(x)−1/2. Then we set

ZT (x) = 2
∫ x

S0

∫ y

S0

M(z,T )

σ2(z)
dz dy ,

so that in particular, Z ′′T (x) = 2σ2(x)M(x ,T ). And finally, let:

GT (x , t) = F (T )−
∫ T

t
M(x , s) ds − ZT (x)

HT (x) =

∫ T

R(x)∧T
[M(x , s)− f (s)] ds + ZT (x)
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Optimality

Then there are two key results:

Proposition
For all (x , t ,T ) ∈ R× R+ × R+:

GT (x , t) + HT (x) ≥ F (t) in D,

GT (x , t) + HT (x) = F (t) in DC .

Note that it follows that the reversed barrier stopping time
attains equality.
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Optimality

Define Q(x) =
∫ x

S0

∫ y
S0

2σ(z)−2 dz dy

Lemma

Suppose f is bounded and for any T > 0,
(

Q(X̃t ); 0 ≤ t ≤ T
)

is UI. Then for any T > 0, the process(
GT (X̃t∧τD , t ∧ τD); 0 ≤ t ≤ T

)
is a martingale,

and (
GT (X̃t , t); 0 ≤ t ≤ T

)
is a supermartingale.

Note that we only have martingale properties up to T !
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Optimality

Theorem
Suppose τD is Rost’s solution to the SEP, and for all T > 0,{

Q(X̃t ); 0 ≤ t ≤ T
}

is a uniformly integrable family. Then τD

maximises EF (τ) over τ : X̃τ ∼ µ.

• This is just Chacon’s optimality result.
• Note that the UI condition is easily checked when σ(x) = x .
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Optimality: sketch of proof

So for any solution τ to the Skorokhod embedding problem, (if
we assume also τ, τD ≤ T !)

EGT (X̃τ , τ) + EHT (X̃τ ) ≥ EF (τ).

But EHT (X̃τ ) depends only on the law of X̃τ , and

EGT (X̃τ , τ) ≤ EGT (X̃τD , τD) = GT (X̃0,0).

In addition, we get equality, GT (X̃τD , τD) + HT (X̃τD ) = F (τD), for
the Rost stopping time, so EF (τ) ≤ EF (τD).
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Optimality

The additional T in the construction means that we cannot
construct a pathwise inequality for all cases, even though we
can prove optimality in general by a limiting argument.

However the functions GT ,HT ,ZT can be interpreted in the limit
provided we can find α > 1 such that for t large:

C ≥ F ′(t) ≥ C −O(t−α).

In this case, we do indeed have a pathwise inequality, and can
derive a pathwise inequality

In C. & Wang, we provided a similar proof of optimality for
Root’s embedding, where the dependence on T is no longer
necessary, and the proof will go through in general.
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Hedging Strategy

Since GT (X̃t , t) is a supermartingale, (and if things are
well-behaved there is a trading strategy which super-replicates
GT (X̃t , t):

GT (St , 〈ln S〉t ) ≤
∫ t

0

∂GT

∂x
(Sr , 〈ln S〉r )

σ2
r

dSr

and HT (Xt ) can be replicated by holding a suitable portfolio of
the traded calls.

Moreover, in the case where τ = τD, we get equality.
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Forward Starting options

More generally, we can consider forward starting options,
whose payoff is F (〈ln S〉t2 − 〈ln S〉t1) if we know the call prices
at times t1, t2.

Construct the barrier where the initial law is now non-trivial: use
the law at time t1 instead.

As well as the portfolio of calls at time t2, and the dynamic
trading strategy as above, we must also be able to replicate
G(X̃t1 ,0). However, this can be done using the calls with
maturity t1.
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Practical implementation

Well-known results on viscosity solutions mean that we can use
standard discretisation methods (Barles-Souganidis, c.f.
Oberhauser & dos Reis) for PDEs to find u, and thus the
reversed barrier.

In fact, with a little extra work, we can even use implicit methods
— for Rost, this seems necessary (lots of detail at the start!)

Can then compute the hedging strategies, and the upper and
lower price bounds.
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Numerical Implementation

• Payoff: F ′(t) = 2(t ∧ K ), K ≈ 0.2. Under the true model.
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Heston-Nandi model

The Heston model is given (under the risk-neutral measure) by:

dSt = rSt dt +
√

vtSt dBt ,

dvt = κ(θ − vt ) dt + ξ
√

vt dB̃t ,

where Bt and B̃t are Brownian motions with correlation ρ. The
Heston-Nandi model is the restricted case where ρ = −1, and
so B̃t = −Bt . Note that vt = σ2

t in our previous notation, so we
are interested in options on

∫ T
0 vt dt
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Heston-Nandi and Barrier stopping times
Using Itô’s Lemma, we know

d(log(e−rtSt )) = −1
2

vt dt +
√

vt dBt

=

(
κθ

ξ
−
(
κ

ξ
+

1
2

)
vt

)
dt − 1

ξ
dvt .

Solving, we see that

log
(

e−rT ST

S0

)
=

1
ξ

(v0 − vT ) +
κθ

ξ
T −

(
κ

ξ
+

1
2

)∫ T

0
vt dt .

Since vT is mean reverting, (vT − v0) ≈ (θ − v0) will be
comparatively small for large T . In this case, we can write:∫ T

0
vt dt ≈ RT (e−rT ST ) =

(
κ

ξ
+

1
2

)−1 [κθ
ξ

T + log
(

S0

e−rT ST

)]
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Heston-Nandi and Barrier stopping times
Using Itô’s Lemma, we know
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Heston-Nandi and barriers
• Samples from the Heston-Nandi model, and the

corresponding barrier function. And an uncorrelated
Heston model
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Large T asymptotics

Theorem

Let M > 0 and suppose ξ, θ, κ, r > 0, ξ 6= 2κ are given
parameters of a Heston-Nandi model, QHN . Suppose QT is the
class of models Q satisfying EQHN

(ST − K )+ = EQ(ST − K )+
for all K ≥ 0.

Then there exists a constant κ, depending only on M and the
parameters of the Heston-Nandi model, such that for all convex,
increasing functions F (t) with suitably smooth derivative
f (t) = F ′(t) such that f (t), f ′(t) ≤ M∗, and for all T ≥ 0

EQHN
F (〈log S〉T ) ≤ inf

Q∈QT
EQF (〈log S〉T ) + κ.

Heston-Nandi is asymptotically optimal.
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Numerical Evidence
• The theorem is rather weak — numerical evidence

suggests there is more to be said:
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Conclusion

• Model-free lower & upper bounds on variance options ∼
finding Root & Rost’s barriers

• Can characterise (and compute) the barriers
• Explicit construction of robust super/sub-hedging strategies
• Heston-Nandi model is ‘asymptotically extreme’ for

variance options
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